Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

V. Viswanathan, Kristian Sommer Thygesen, J.S. Hummelshøj, Jens Kehlet Nørskov, G. Girishkumar, B.D. McCloskey, A.C. Luntz, A.C. Luntz

Research output: Contribution to journalJournal articleResearchpeer-review

928 Downloads (Pure)

Abstract

Non-aqueous Li-air or Li-O2 cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li 2O2 film to the Li2O2-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li2O 2-electrolyte interface. We report both electrochemical experiments using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li2O2 films produced during Li-O 2 discharge. Both experiment and theory show a sudden death in charge transport when film thickness is ∼5 to 10 nm. The theoretical model shows that this occurs when the tunneling current through the film can no longer support the electrochemical current. Thus, engineering charge transport through Li2O2 is a serious challenge if Li-O2 batteries are ever to reach their potential. © 2011 American Institute of Physics.
Original languageEnglish
JournalJournal of Chemical Physics
Volume135
Issue number21
Pages (from-to)214704
ISSN0021-9606
DOIs
Publication statusPublished - 2011

Bibliographical note

© 2011 American Institute of Physics.

Fingerprint

Dive into the research topics of 'Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries'. Together they form a unique fingerprint.

Cite this