Efficient sound radiation using a bandgap structure

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

Documents

DOI

View graph of relations

This work reports on the use of bandgaps to increase the efficiency of sound radiation employing defect modes on a phononic crystal (PnC). A PnC consisting of a 2D array of studs on an aluminum plate is considered, and a defect is created by removing four studs. Numerical simulations predict 8 dB higher radiation efficiency and significantly more uniform directivity of sound due to the piston-like defect modes that suppress interference between acoustic waves. An experimental study of the vibrational response is carried out in order to validate the numerical result. Comparisons of the radiation efficiency and the directivity index between the numerical and experimental results show good agreement. These findings may pave the way to use bandgap structures as effective acoustic radiators.

Original languageEnglish
Article number041903
JournalApplied Physics Letters
Volume115
Issue number4
Number of pages6
ISSN0003-6951
DOIs
Publication statusPublished - 22 Jul 2019
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 188319061