Efficient simulation of autofluorescence effects in microscopic lenses

Herbert Gross, Olga Rodenko, Moritz Esslinger, Andreas Tünnermann

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

406 Downloads (Pure)

Abstract

The use of fluorescence in microscopy is a well known technology today. Due to the autofluorescence of the materials of the optical system components, the contrast of the images is degraded. The calculation of autofluorescense usually is performed by brute force methods as volume scattering. The efficiency of calculations in this case is extremely low and a huge number of rays must be calculated. In stray light calculations the concept of important sampling is used to reduce computational effort. The idea is to calculate only rays, which have the chance to reach the target surface. The fluorescence conversion can be considered to be a scatter process and therefore a modification of this idea is used here. The reduction factor is calculated by simply comparing in every z-plane of the lenses the size of the illuminated phase space domain with the corresponding acceptance domain. The boundaries of the domains are determined by simple tracing of the limiting rays of the light cone of the source as well as the pixel area under consideration. The small overlap of both domains can be estimated by geometrical considerations. The correct photometric scaling and the discretization of the volumes must be performed properly. Some necessary approximations produce negligible errors. The improvement in run time is in the range of 104 . It is shown with some practical examples of microscopic lenses, that the results are comparable with conventional methods. The limitations and the consequences for questions of the lens design are discussed.
Original languageEnglish
Title of host publicationProceedings of SPIE
Number of pages7
Volume9626
PublisherSPIE - International Society for Optical Engineering
Publication date2015
Article number962609
ISBN (Print)9781628418156
DOIs
Publication statusPublished - 2015
EventOptical Design and Engineering: Optical Design and Engineering VI - Jena, Germany
Duration: 7 Sep 201510 Sep 2015

Conference

ConferenceOptical Design and Engineering
CountryGermany
CityJena
Period07/09/201510/09/2015
SeriesProceedings of SPIE, the International Society for Optical Engineering
Volume9626
ISSN0277-786X

Bibliographical note

Copyright 2015 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Keywords

  • Microscopy
  • Autofluorescence
  • Straylight
  • Contrast
  • Simulation

Cite this

Gross, H., Rodenko, O., Esslinger, M., & Tünnermann, A. (2015). Efficient simulation of autofluorescence effects in microscopic lenses. In Proceedings of SPIE (Vol. 9626). [962609] SPIE - International Society for Optical Engineering. Proceedings of SPIE, the International Society for Optical Engineering, Vol.. 9626 https://doi.org/10.1117/12.2191260