Efficient production of α-acetolactate by whole cell catalytic transformation of fermentation-derived pyruvate

Robin Dorau, Lin Chen, Jianming Liu, Peter Ruhdal Jensen*, Christian Solem

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

80 Downloads (Pure)


Diacetyl provides the buttery aroma in products such as butter and margarine. It can be made via a harsh set of chemical reactions from sugarcane bagasse, however, in dairy products it is normally formed spontaneously from α-acetolactate, a compound generated by selected lactic acid bacteria in the starter culture used. Due to its bacteriostatic properties, it is difficult to achieve high levels of diacetyl by fermentation. Here we present a novel strategy for producing diacetyl based on whole-cell catalysis, which bypasses the toxic effects of diacetyl. By expressing a robust α-acetolactate synthase (ALS) in a metabolically optimized Lactococcus lactis strain we obtained a whole-cell biocatalyst that efficiently converted pyruvate into α-acetolactate. After process optimization, we achieved a titer for α-acetolactate of 172 ± 2 mM. Subsequently we used a two-stage production setup, where pyruvate was produced by an engineered L. lactis strain and subsequently used as the substrate for the biocatalyst. Using this approach, 122 ± 5 mM and 113 ± 3 mM α-acetolactate could be made from glucose or lactose in dairy waste, respectively. The whole-cell biocatalyst was robust and fully active in crude fermentation broth containing pyruvate. An efficient approach for converting sugar into α-acetolactate, via pyruvate, was developed and tested successfully. Due to the anaerobic conditions used for the biotransformation, little diacetyl was generated, and this allowed for efficient biotransformation of pyruvate into α-acetolactate, with the highest titers reported to date. The use of a two-step procedure for producing α-acetolactate, where non-toxic pyruvate first is formed, and subsequently converted into α-acetolactate, also simplified the process optimization. We conclude that whole cell catalysis is suitable for converting lactose in dairy waste into α-acetolactate, which favors resource utilization.
Original languageEnglish
Article number217
JournalMicrobial Cell Factories
Issue number1
Number of pages11
Publication statusPublished - 2019


Dive into the research topics of 'Efficient production of α-acetolactate by whole cell catalytic transformation of fermentation-derived pyruvate'. Together they form a unique fingerprint.

Cite this