Effects of the Hedgehog signalling inhibitor itraconazole on developing rat ovaries

Hanna Katarina Lilith Johansson, Camilla Taxvig, Gustav Peder Mohr Olsen, Terje Svingen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

86 Downloads (Pure)

Abstract

Early ovary development is considered to be largely hormone independent, yet there are associations between fetal exposure to endocrine disrupting chemicals and reproductive disorders in women. This can potentially be explained by perturbations to establishment of ovarian endocrine function rather than interference with an already established hormone system. In this study we explore if Hedgehog (HH) signaling, a central pathway for correct ovary development, can be disrupted by exposure to HH-disrupting chemicals, using the antifungal itraconazole as model compound. In the mouse Leydig cell line TM3, used as a proxy for ovarian theca cells, itraconazole exposure had a suppressing effect on genes downstream of HH signaling, such as Gli1. Exposing explanted rat ovaries (gestational day 22 or postnatal day 3) to 30 µM itraconazole for 72 h induced significant suppression of genes in the HH signaling pathway with altered Ihh, Gli1, Ptch1, and Smo expression similar to those previously observed in Ihh/Dhh knock-out mice. Exposing rat dams to 50 mg/kg bw/day in the perinatal period did not induce observable changes in the offspring’s ovaries. Overall, our results suggest that HH signal disruptors may affect ovary development with potential long-term consequences for female reproductive health. However, potent HH inhibitors would likely cause severe teratogenic effects at doses lower than those causing ovarian dysgenesis, so the concern with respect to reproductive disorder is for the presence of HH disruptors at low concentration in combination with other ovary or endocrine disrupting compounds.
Original languageEnglish
JournalToxicological Sciences
Volume182
Issue number1
Pages (from-to)60–69
Number of pages10
ISSN1096-6080
DOIs
Publication statusPublished - 2021

Keywords

  • Ovary
  • Endocrine disruption
  • Female reproduction
  • Ihh
  • Dhh
  • Theca cells

Fingerprint

Dive into the research topics of 'Effects of the Hedgehog signalling inhibitor itraconazole on developing rat ovaries'. Together they form a unique fingerprint.

Cite this