Effects of surface roughness and cross-sectional distortions on the wind-induced response of bridge cables in dry conditions

Giulia Matteoni, Christos T. Georgakis

Research output: Contribution to conferencePaperResearchpeer-review

Abstract

Theoretical and experimental investigations to date assumed that bridge stay cables can be modelled as ideal circular cylinders and that their aerodynamic coefficients are invariant with wind angle-of-attack. These changes are neglected when the potential for bridge cable instability is evaluated, i.e. in terms of negative aerodynamic damping. On the other hand it has been demonstrated that bridge cables are characterised by local alterations of their inherent surface roughness and shape. Small deviations from ideal circularity determine significant changes with Reynolds number in the static drag and lift coefficients. The present study focuses on the dynamic response of a full-scale yawed bridge cable section model, for varying Reynolds numbers and wind angles-of-attack. Tests results show that the in-plane aerodynamic damping of the bridge cable section, and the overall dynamic response, is strongly affected by changes in the wind angle-ofattack.
Original languageEnglish
Publication date2013
Number of pages8
Publication statusPublished - 2013
Event6th European and African Conference on Wind Engineering - Robinson College, Cambridge, United Kingdom
Duration: 7 Jul 201311 Jul 2013
Conference number: 6

Conference

Conference6th European and African Conference on Wind Engineering
Number6
LocationRobinson College
CountryUnited Kingdom
CityCambridge
Period07/07/201311/07/2013

Fingerprint Dive into the research topics of 'Effects of surface roughness and cross-sectional distortions on the wind-induced response of bridge cables in dry conditions'. Together they form a unique fingerprint.

Cite this