TY - JOUR
T1 - Effects of interactions between natural organic matter and aquatic organism degradation products on the transformation and dissolution of cobalt and nickel-based nanoparticles in synthetic freshwater
AU - Chang, Tingru
AU - Khort, Alexander
AU - Saeed, Anher
AU - Blomberg, Eva
AU - Nielsen, Maria Bille
AU - Hansen, Steffen Foss
AU - Odnevall, Inger
PY - 2023
Y1 - 2023
N2 - Expanding applications and production of engineered nanoparticles lead to an increased risk for their environmental dispersion. Systematic knowledge of surface transformation and dissolution of nanoparticles is essential for risk assessment and regulation establishment. Such aspects of Co- and Ni-based nanoparticles including metals, oxides, and solution combustion synthesized metal nanoparticles (metal cores with carbon shells) were investigated upon environmental interaction with organic matter, simulated by natural organic matter (NOM) and degradation products from zooplankton and algae (eco-corona biomolecules, EC) in freshwater (FW). The presence of NOM and EC in FW results in negative surface charges of the nanoparticles reduces the extent of nanoparticles agglomeration, and increases concentration, mainly due to the surface adsorption of carboxylate groups of the organic matter. The dissolution of the Co-based nanoparticles was for all conditions (FW, FW with NOM or EC) higher than the Ni-based, except for Co3O4 being nearly non-soluble. The surface transformation and dissolution of nanoparticles are highly exposure and time-dependent, and surface- and environment specific. Therefore, no general correlation was observed between dissolution and, particle types, surface conditions, or EC/NOM adsorption. This underlines the importance of thorough investigations of nanoparticles adsorption/desorption, degradation, and exposure scenarios for developing regulatory relevant protocols and guidelines.
AB - Expanding applications and production of engineered nanoparticles lead to an increased risk for their environmental dispersion. Systematic knowledge of surface transformation and dissolution of nanoparticles is essential for risk assessment and regulation establishment. Such aspects of Co- and Ni-based nanoparticles including metals, oxides, and solution combustion synthesized metal nanoparticles (metal cores with carbon shells) were investigated upon environmental interaction with organic matter, simulated by natural organic matter (NOM) and degradation products from zooplankton and algae (eco-corona biomolecules, EC) in freshwater (FW). The presence of NOM and EC in FW results in negative surface charges of the nanoparticles reduces the extent of nanoparticles agglomeration, and increases concentration, mainly due to the surface adsorption of carboxylate groups of the organic matter. The dissolution of the Co-based nanoparticles was for all conditions (FW, FW with NOM or EC) higher than the Ni-based, except for Co3O4 being nearly non-soluble. The surface transformation and dissolution of nanoparticles are highly exposure and time-dependent, and surface- and environment specific. Therefore, no general correlation was observed between dissolution and, particle types, surface conditions, or EC/NOM adsorption. This underlines the importance of thorough investigations of nanoparticles adsorption/desorption, degradation, and exposure scenarios for developing regulatory relevant protocols and guidelines.
KW - Nanoparticles
KW - Environmental transformation
KW - Freshwater
KW - Natural organic matter
KW - Eco-corona
U2 - 10.1016/j.jhazmat.2022.130586
DO - 10.1016/j.jhazmat.2022.130586
M3 - Journal article
C2 - 37055991
SN - 0304-3894
VL - 445
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 130586
ER -