Effects of constraints on lattice re-orientation and strain in polycrystal plasticity simulations

Martin Kristoffer Haldrup, R.D. McGinty, D.L. McDowell

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    Employing a rate-dependent crystal plasticity model implemented in a novel and fast algorithm, two instantiations of an OFHC copper microstructure have been simulated by FE modelling to 11% tensile engineering strain with two different sets of boundary conditions. Analysis of lattice rotations, strain distributions and global stress–strain response show the effect of changing from free to periodic boundary conditions to be a perturbation of a response dictated by the microstructure. Average lattice rotation for each crystallographic grain has been found to be in fair agreement with Taylor-constraint simulations while fine scale element-resolved analysis shows large deviations from this prediction. Locally resolved analysis shows the existence of large domains dominated by slip on only a few slip systems. The modelling results are discussed in the light of recent experimental advances with respect to 2- and 3-dimensional characterization and analysis methods.
    Original languageEnglish
    JournalComputational Materials Science
    Volume44
    Issue number4
    Pages (from-to)1198-1207
    ISSN0927-0256
    DOIs
    Publication statusPublished - 2009

    Keywords

    • Materials characterization and modelling
    • Materials research

    Fingerprint

    Dive into the research topics of 'Effects of constraints on lattice re-orientation and strain in polycrystal plasticity simulations'. Together they form a unique fingerprint.

    Cite this