### Abstract

The effective stress coefficient, introduced by Biot, is used for predicting effective stress or pore pressure in the subsurface. It is not a constant value. It is different for different types of sediment and it is stress dependent. We used a model, based on contact between the grains to describe the reason for change in effective stress coefficient under stress. Our model suggests that change in effective stress coefficient will be higher at uniaxial stress condition than at hydrostatic condition. We derived equations from the original definition of Biot to estimate effective stress coefficient from one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress determined under uniaxial strain condition will be more relevant in reservoir studies.

Original language | English |
---|---|

Title of host publication | Proceedings of the 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012 |

Number of pages | 6 |

Publication date | 2012 |

Publication status | Published - 2012 |

Event | 74th EAGE Annual Conference and Exhibition incorporating SPE Europec 2012 - Copenhagen, Denmark Duration: 4 Jul 2012 → 7 Jul 2012 http://www.eage.org/events/index.php?eventid=520 |

### Conference

Conference | 74th EAGE Annual Conference and Exhibition incorporating SPE Europec 2012 |
---|---|

Country | Denmark |

City | Copenhagen |

Period | 04/07/2012 → 07/07/2012 |

Internet address |

## Cite this

Alam, M. M., & Fabricius, I. L. (2012). Effective stress coefficient for uniaxial strain condition. In

*Proceedings of the 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012*