Effective Diffusion Coefficients in Coal Chars

Jan Erik Johnsson, Anker Jensen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor. Particle sizes in the range 0.05-5 mm were tested, and the effective diffusion coefficients were estimated from measured effectiveness factors using the Thiele modulus. At 1079 K the effective diffusion coefficients were 5.5 X 10(-6) m(2)/s and 6.8 X 10(-6) m(2)/s for N2O and NO, respectively. The experimental results were compared with theoretical values calculated from the mean pore radius and the cross-linked pore model. The method of mean pore radius underestimated the effective diffusion coefficient more than an order of magnitude. Using the cross-linked pore model, the bimodal pore size distribution, and a tortuosity factor of 5. a complete agreement between the experimental and the theoretical Value was found. The conclusion was that for a char with a wide pore size distribution, the cross-linked pore model is a good choice for a theoretical calculation of the effective diffusion coefficient. In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50 mum.
Original languageEnglish
JournalProceedings of the Combustion Institute
Volume28
Pages (from-to)2181-2188
ISSN1540-7489
Publication statusPublished - 2001

Cite this