Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure

Birgitte Kiær Ahring, Ashraf Ibrahim, Zuzana Mladenovska

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    The effect of a temperature increase from 55 to 65 degreesC on process performance and microbial population dynamics were investigated in thermophilic, lab-scale, continuously stirred tank reactors. The reactors had a working volume of 3 l and were fed with cattle manure at an organic loading rate of 3 g VS/l reactor volume/d. The hydraulic retention time in the reactors was 15 days. A stable reactor performance was obtained for periods of three retention times both at 55 degreesC and 65 degreesC. At 65 degreesC methane yield stabilized at approximately 165 ml/g VS/d compared to 200 ml/g VS/d at 55 degreesC. Simultaneously, Ibe level of total volatile fatty acids, VFA, increased from being below 0.3g/l to 1.8-2.4g acetate/l. The specific methanogenic activities (SMA) of biomass from the reactors were measured with acetate, propionate, butyrate, hydrogen, formate and glucose. At 65 degreesC, a decreased activity was found For glucosc-, acetate- , butyrate- and formate-utilizers and no significant activity was measured with propionate. Only the hydrogen-consuming methanogens showed an enhanced activity at 65 degreesC. Numbers of cultivable methanogens, estimated by the most probable number (MPN) method, were significantly lower on glucose, acetate and butyrate at the increased operational temperature, while the numbers of hydrogenotrophic methanogens remained unchanged. No viable propionate-degrading bacteria were enriched at 65 degreesC. Use of ribosomal oligonucleotide probes showed that an increase in temperature resulted in a decreased contribution of the rRNA of the domain bacteria from 74-79 to 57-62% of the universal probe, while the rRNA of the domain archaea, increased from 18-23 to 34-36%.
    Original languageEnglish
    JournalWater Research
    Volume35
    Issue number10
    Pages (from-to)2446-2452
    Publication statusPublished - 2001

    Fingerprint

    Dive into the research topics of 'Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure'. Together they form a unique fingerprint.

    Cite this