Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed (εeq=0.5) samples of stable stainless steel EN 1.4369 were nitrided or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa's in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering
Contributors: Bottoli, F., Christiansen, T. L., Winther, G., Somers, M. A. J.
Pages: 4001–4011
Publication date: 2016
Peer-reviewed: Yes

Publication information
Volume: 47
Issue number: 8
ISSN (Print): 1073-5623
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.91 SJR 1.206 SNIP 1.334
Web of Science (2016): Impact factor 1.874
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
MetallMaterTrans_A_16_1.pdf. Embargo ended: 16/06/2017
DOIs: 10.1007/s11661-016-3586-4
Source: FindIt
Source ID: 2305872313
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review