A study was carried out to evaluate the effect of integrating chickpea on yield and quality attributes of tomatoes and maize under varying supply levels of farm yard manure (FYM) and phosphate rock (PR). The study was conducted both on-farm (farmer’s field in Kiserian, Kajiado County) and on-station at Kabete Campus field station, University of Nairobi, Kenya. The experimental design was a randomized complete block (RCBD) with four replications in a split plot arrangement where the main plots were three cropping systems; monocropping, intercropping and crop rotation and the split plots were FYM and PR. Crop yields, nutrients and physical attributes increased in the different treatments in the following order control < MRP < FYM in the three cropping systems across the four growing seasons at both sites. Tomato in season four in rotations with chickpea at Kabete had; FYM: 3.65% N, 597 ppm P, 3.95 Mg ha-1 fruit yield and 1.554 t ha-1 biomass, firm and >170g and 6cm. MRP: 3.09% N, 634 ppm P, 2.907 Mg ha-1 yield and 1.093 t ha-1 biomass, firm and >100 g and 3 cm. Control: 2.47% N, 533 ppm P, 2.149 Mg ha-1 fruit yield and 0.757 t ha-1, flaccid and <100 g and 3 cm. Monocrop gave; control: 2.17% N, 494 ppm P, 2.138 Mg ha-1 fruit yield and 0.697 t ha-1 biomass. FYM: 3.03% N, 587 ppm P, 3.59 Mg ha-1 fruit yield and 1.523 t ha-1 biomass. MRP: 2.56% N, 553 ppm P, 2.951 Mg ha-1 yield and 1.046 t ha-1 biomass. Similar trends were observed in maize and tomato performances in all the seasons at both sites. Thus it can be deduced that, FYM and MRP application and legume integration in cropping systems improve crop performance.