Effect of boat noise and angling on lake fish behaviour - DTU Orbit (04/08/2019)

Effect of boat noise and angling on lake fish behaviour

The effects of disturbances from recreational activities on the swimming speed and habitat use of roach Rutilus rutilus, perch Perca fluviatilis and pike Esox lucius were explored. Disturbances were applied for 4h as (1) boating in short intervals with a small outboard internal combustion engine or (2) boating in short intervals combined with angling with artificial lures between engine runs. The response of the fish species was evaluated by high-resolution tracking using an automatic acoustic telemetry system and transmitters with sub-minute burst rates. Rutilus rutilus swimming speed was significantly higher during disturbances [both (1) and (2)] with an immediate reaction shortly after the engine started. Perca fluviatilis displayed increased swimming activity during the first hour of disturbance but not during the following hours. Swimming activity of E. lucius was not significantly different between disturbance periods and the same periods on days without disturbance (control). Rutilus rutilus increased their use of the central part of the lake during disturbances, whereas no habitat change was observed in P. fluviatilis and E. lucius. No difference in fish response was detected between the two types of disturbances (boating with and without angling), indicating that boating was the primary source of disturbance. This study highlights species-specific responses to recreational boating and may have implications for management of human recreational activities in lakes.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology
Contributors: Jacobsen, L., Baktoft, H., Jepsen, N., Aarestrup, K., Berg, S., Skov, C.
Pages: 1768-1780
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Journal of Fish Biology
Volume: 84
Issue number: 6
ISSN (Print): 0022-1112
Ratings:
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.76 SJR 0.956 SNIP 0.921
Web of Science (2014): Impact factor 1.658
Web of Science (2014): Indexed yes
Original language: English
DOIs:
10.1111/jfb.12395

Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review