Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin

Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin

Alginate is an anionic polysaccharide capable of forming insoluble particles with proteins. Hence, alginate has potential as a protein carrier. However, the role of physical properties of the polysaccharide, such as degree of polymerization (DPn) and mannuronic/guluronic acid ratio, remains to be fully explored. Particle formation of a high and a low molar mass alginate (ALG) with β-lactoglobulin (BLG) at pH 2-8 depends on the average DPn (HMW-ALG: 1.59·10³; LMW-ALG: 0.23·10³) and the mannuronic/guluronic acid ratio (1.0; 0.6) as supported by using ManA₆ and GulA₆ as models. Dynamic light scattering (DLS) showed that particles of BLG with either of the two ALGs have essentially the same hydrodynamic diameter (DₜH) at pH 3 and 2, while at pH 4 particles of LMW-ALG/BLG have larger DₜH than of HMW-ALG/BLG. At pH 5-8 no significant particle formation was observed. ManA₆ did not form insoluble particles at pH 2-8, while GulA₆ formed insoluble particles, albeit only at pH 4. K_d was approximately 10-fold higher for LMW-ALG/BLG than HMW-ALG/BLG and 3 orders of magnitude higher for an alginate trisaccharide/BLG complexation as determined by isothermal titration calorimetry (ITC). The alginate trisaccharide did not form insoluble particles with BLG at pH 3 and 4, though interaction still occurred. δH_app and molar stoichiometry of BLG in the complexes with the two ALGs differed by a factor of 7, as did their DPn, which thus affected the interaction strength, but not the BLG content. At pH 4 the BLG content doubled in the particle due to BLG dimerization. The findings emphasize the importance of DPn, mannuronic/guluronic acid ratio and pH in formulations containing alginate/whey protein particles.

General information
Publication status: Published
Organisations: Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Protein Glycoscience and Biotechnology, Department of Micro- and Nanotechnology, Amphiphilic Polymers in Biological Sensing, University of Copenhagen, DuPont, Roskilde University
Corresponding author: Svensson, B.
Pages: 157-163
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Food Hydrocolloids
Volume: 75
ISSN (Print): 0268-005X
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 6.32 SJR 2.055 SNIP 1.989
Web of Science (2018): Impact factor 5.839
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
effect_of_alginate.pdf. Embargo ended: 05/09/2018
DOIs:
10.1016/j.foodhyd.2017.09.001
Source: Scopus
Source-ID: 85029430501
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review