TY - JOUR
T1 - Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy
AU - Meesenburg, Wiebke
AU - Ommen, Torben
AU - Thorsen, Jan Eric
AU - Elmegaard, Brian
PY - 2020
Y1 - 2020
N2 - Future district heating systems are expected to supply lower temperatures to increase system efficiency and enable exploitation of renewable heat sources. To answer whether it is beneficial to lower district heating temperatures below the level where it is still possible to supply domestic hot water directly, the economic feasibility of three ultra-low temperature district heating (ULTDH) concepts was compared to low temperature district heating (LTDH). The dependency of the economic feasibility on the boundary conditions of the supplied district heating area was assessed systematically and feasible boundary conditions were identified. For this purpose building plot ratio, specific heat demand and central heating unit were varied. The different solutions were compared based on levelised cost of heat, socioeconomic net present value and overall seasonal coefficient of performance. It was found that in most cases LTDH was economically preferred. ULTDH could be feasible if the linear heat demand density (LHDD) was high, if the cost of decentral units could be lowered or if the investment cost of the central heating unit was significantly lower compared to LTDH. Among the ULTDH solutions, apartment units were preferable for low LHDD, while units at building level performed better for larger LHDD.
AB - Future district heating systems are expected to supply lower temperatures to increase system efficiency and enable exploitation of renewable heat sources. To answer whether it is beneficial to lower district heating temperatures below the level where it is still possible to supply domestic hot water directly, the economic feasibility of three ultra-low temperature district heating (ULTDH) concepts was compared to low temperature district heating (LTDH). The dependency of the economic feasibility on the boundary conditions of the supplied district heating area was assessed systematically and feasible boundary conditions were identified. For this purpose building plot ratio, specific heat demand and central heating unit were varied. The different solutions were compared based on levelised cost of heat, socioeconomic net present value and overall seasonal coefficient of performance. It was found that in most cases LTDH was economically preferred. ULTDH could be feasible if the linear heat demand density (LHDD) was high, if the cost of decentral units could be lowered or if the investment cost of the central heating unit was significantly lower compared to LTDH. Among the ULTDH solutions, apartment units were preferable for low LHDD, while units at building level performed better for larger LHDD.
U2 - 10.1016/j.energy.2019.116496
DO - 10.1016/j.energy.2019.116496
M3 - Journal article
VL - 191
JO - Energy
JF - Energy
SN - 0360-5442
M1 - 116496
ER -