Abstract
The deposition and degradation of starch in plants is subject to extensive post-translational regulation. To permit degradation of B-type crystallites present in tuberous and leaf starch these starch types are phosphorylated by glucan, water dikinase (GWD). At the level of post-translational redox regulation, ADPglucose pyrophosphorylase, beta-amylase (BAM1), limit dextrinase (LD), the starch phosphorylator GWD and the glucan phosphatase dual-specificity phosphatase 4 (DSP4), also named starch excess 4 (SEX4), are reductively activated in vitro. Redox screens now suggest the presence of a substantially more extensive and coordinated redox regulation involving a larger number of enzymes. Noticeably several of these enzymes contain a new type of low-affinity carbohydrate-binding module that we term a low-affinity starch-binding domain or LA-SBD. These are present in the CBM20, CBM45 and CBM53 families and can enable diurnal dynamics of starch-enzyme recognition. Such diurnal changes in starch binding have been indicated for the redox-regulated GWD and SEX4.
Original language | English |
---|---|
Journal | Biocatalysis and Biotransformation |
Volume | 28 |
Issue number | 1 |
Pages (from-to) | 3-9 |
ISSN | 1024-2422 |
DOIs | |
Publication status | Published - 2010 |
Keywords
- enzyme affinity
- redox regulation
- starch-binding domain
- starch phosphorylation
- Starch metabolism