Dynamic Passive Dosing for Studying the Biotransformation of Hydrophobic Organic Chemicals: Microbial Degradation as an Example

Kilian E. C. Smith, Arno Rein, Stefan Trapp, Philipp Mayer, Ulrich Gosewinkel Karlson

    Research output: Contribution to journalJournal articleResearchpeer-review

    699 Downloads (Pure)

    Abstract

    Biotransformation plays a key role in hydrophobic organic compound (HOC) fate, and understanding kinetics as a function of (bio)availability is critical for elucidating persistence, accumulation, and toxicity. Biotransformation mainly occurs in an aqueous environment, posing technical challenges for producing kinetic data because of low HOC solubilities and sorptive losses. To overcome these, a new experimental approach based on passive dosing is presented. This avoids using cosolvent for introducing the HOC substrate, buffers substrate depletion so biotransformation is measured within a narrow and defined dissolved concentration range, and enables high compound turnover even at low concentrations to simplify end point measurement. As a case study, the biodegradation kinetics of two model HOCs by the bacterium Sphingomonas paucimobilis EPA505 were measured at defined dissolved concentrations ranging over 4 orders of magnitude, from 0.017 to 658 μg L–1 for phenanthrene and from 0.006 to 90.0 μg L–1 for fluoranthene. Both compounds had similar mineralization fluxes, and these increased by 2 orders of magnitude with increasing dissolved concentrations. First-order mineralization rate constants were also similar for both PAHs, but decreased by around 2 orders of magnitude with increasing dissolved concentrations. Dynamic passive dosing is a useful tool for measuring biotransformation kinetics at realistically low and defined dissolved HOC concentrations.
    Original languageEnglish
    JournalEnvironmental Science & Technology (Washington)
    Volume46
    Issue number9
    Pages (from-to)4852-4860
    ISSN0013-936X
    DOIs
    Publication statusPublished - 2012

    Fingerprint

    Dive into the research topics of 'Dynamic Passive Dosing for Studying the Biotransformation of Hydrophobic Organic Chemicals: Microbial Degradation as an Example'. Together they form a unique fingerprint.

    Cite this