Abstract

Thermal power need to operate, on a daily basis, with frequent and fast load changes to balance the large variations of intermittent energy sources, such as wind and solar energy. To make the integration of carbon capture to power plants economically and technically feasible, the carbon capture process has to be able to follow these fast and large load changes without decreasing the overall performance of the carbon capture plant. Therefore, dynamic models for simulation, optimization and control system design are essential. In this work, we compare the transient behavior of the model against dynamic pilot data for CO2 absorption and desorption for step-changes in the flue gas flow rate. In addition we investigate the dynamic behavior of a full-scale post-combustion capture plant using monoethanolamine (MEA) and piperazine (PZ). This analysis demonstrates the good agreement between the developed model (dCAPCO2) and the pilot measurements at both, transient and steady-state conditions. It outlines how the time needed to reach a new steady-state varies with respect to amine type and concentration. The simulation study reveals that it is essential to control the lean solvent flow to avoid sudden changes in the CO2 removal rate and to avoid increased heat demand of solvent regeneration. In addition, it shows how storage tanks (liquid hold-up of the system) can be designed to accommodate significant upstream changes in the power plant management. This flexibility is especially needed for operation in future mixed green energy market. [All rights reserved Elsevier].
Original languageEnglish
JournalEnergy Procedia
Volume86
Pages (from-to)205-214
ISSN1876-6102
DOIs
Publication statusPublished - 2016
EventThe 8th Trondheim Conference on CO2 Capture, Transport and Storage (TCCS-8) - Trondheim, Norway
Duration: 16 Jun 201518 Jun 2015
https://www.sintef.no/projectweb/tccs-8/

Conference

ConferenceThe 8th Trondheim Conference on CO2 Capture, Transport and Storage (TCCS-8)
CountryNorway
CityTrondheim
Period16/06/201518/06/2015
Internet address

Bibliographical note

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords

  • Dynamic modeling
  • Flexible operation
  • Post-combustion CO2 capture
  • Model validation
  • Pilot plant operations

Cite this