Dynamic model development and validation for a nitrifying moving bed biofilter: Effect of temperature and influent load on the performance

Gürkan Sin, Jan Weijma, Henri Spanjers, Ingmar Nopens

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

A mathematical model with adequate complexity integrating hydraulics, biofilm and microbial conversion processes is successfully developed for a continuously moving bed biofilter performing tertiary nitrification. The model was calibrated and validated using data from Nether Stowey pilot plant in UK. For the model, the mixing is approximated using tanks-in-series approach, the biofilm is described using a one-dimensional multi-species model, and the microbial processes are described by ASM1. A scenario analysis with the model revealed that the temperature has a significant impact on the ammonium removal efficiency, doubling nitrification capacity every 5 degrees C increase. However, at temperatures higher than 20 degrees C, the biofilm thickness starts to decrease due to increased decay rate. The influent nitrogen load was also found to be influential on the filter performance, while the hydraulic loading had relatively negligible impact. Overall, the calibrated model can now reliably be used for design and process optimization purposes.
Original languageEnglish
JournalProcess Biochemistry
Volume43
Issue number4
Pages (from-to)384-397
ISSN1359-5113
DOIs
Publication statusPublished - 2008

Keywords

  • moving bed sand filter
  • nitrification
  • biofilm
  • modeling
  • tertiary treatment
  • ASTRASAND

Fingerprint Dive into the research topics of 'Dynamic model development and validation for a nitrifying moving bed biofilter: Effect of temperature and influent load on the performance'. Together they form a unique fingerprint.

Cite this