Drug-Driven Phenotypic Convergence Supports Rational Treatment Strategies of Chronic Infections

Chronic *Pseudomonas aeruginosa* infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of *P. aeruginosa* toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator *nfxB*. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic *P. aeruginosa* populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring *nfxB* mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Bacterial Synthetic Biology, Department of Systems Biology, Department of Biotechnology and Biomedicine, Office for Study Programmes and Student Affairs, CHO Core, iLoop, Infection Microbiology, Copenhagen University Hospital
Corresponding author: Sommer, M. O. A.
Pages: 121-134
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: CELL
Volume: 172
Issue number: 1-2
ISSN (Print): 0092-8674
Ratings:
BFI (2018): BFI-level 3
Scopus rating (2018): CiteScore 24.38 SJR 25.976 SNIP 6.57
Web of Science (2018): Impact factor 36.216
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
1-s2.0-S0092867417314927-main
DOIs:
10.1016/j.cell.2017.12.012

Bibliographical note
Open Access funded by European Research Council
Under a Creative Commons license
Source: Findit
Source ID: 2395194608
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review