Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1

Research output: Contribution to journalJournal article – Annual report year: 2014Researchpeer-review

View graph of relations

Expression of miRNAs in Neuroendocrine Neoplasms (NEN) is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs), and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases and four normal intestinal tissues was characterized using miRNA arrays, and validated by in-situ hybridization and qPCR. Among the down-regulated miRNAs miR-129-5p and the let-7f/let-7 family, were selected for further characterization. Transfection of miR-129-5p inhibited growth of a pulmonary and an intestinal carcinoid cell line. Analysis of mRNA expression changes identified EGR1 and G3BP1 as miR-129-5p targets. They were validated by luciferase assay and western blotting, and found robustly expressed in NETs by immunohistochemistry. Knockdown of EGR1 and G3BP1 mimicked the growth inhibition induced by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors.
Original languageEnglish
JournalGenes
Volume6
Issue number1
Pages (from-to)1-21
ISSN2073-4425
DOIs
Publication statusPublished - 2014
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • GENETICS, MIDGUT CARCINOID-TUMORS, TRANSCRIPTION FACTOR, MICRORNA EXPRESSION, SIGNALING PATHWAY, BINDING PROTEINS, REAL-TIME, CANCER, GROWTH, CELLS, DOMAIN

Download statistics

No data available

ID: 107843942