Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold

Stefan Ringe, Carlos G. Morales-Guio, Leanne D. Chen, Meredith Fields, Thomas F. Jaramillo, Christopher Hahn, Karen Chan*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

452 Downloads (Pure)


Electrochemical CO2 reduction is a potential route to the sustainable production of valuable fuels and chemicals. Here, we perform CO2 reduction experiments on Gold at neutral to acidic pH values to elucidate the long-standing controversy surrounding the rate-limiting step. We find the CO production rate to be invariant with pH on a Standard Hydrogen Electrode scale and conclude that it is limited by the CO2 adsorption step. We present a new multi-scale modeling scheme that integrates ab initio reaction kinetics with mass transport simulations, explicitly considering the charged electric double layer. The model reproduces the experimental CO polarization curve and reveals the rate-limiting step to be *COOH to *CO at low, CO2 adsorption at intermediate, and CO2 mass transport at high overpotentials. Finally, we show the Tafel slope to arise from the *CO2-dipole-field interaction. In sum, this work highlights the importance of surface charging for electrochemical kinetics and mass transport.
Original languageEnglish
Article number33
JournalNature Communications
Publication statusPublished - 2020

Cite this