Abstract
Cubic silicon carbide (3C-SiC) could pave the way for development of advanced electronic and optoelectronic devices. It could be an excellent substrate for growth of nitride and epitaxial graphene layers. Boron doped 3C-SiC films could reach up to 60% efficiency and pave the way for a new solar cell technology. Nitrogen and boron doped 3C-SiC layers can depict a new infrared LED.
Hexagonal SiC is an excellent substrate for heteropeitaxial growth of 3C-SiC due to excellent compatibility in lattice constant and thermal expansion coefficient. However, the growth of 3C-SiC on such substrates is still being followed by a number of obstacles like polytype stabilization and high density of double positioning boundaries in the grown material. The polytype stability during epitaxial growth of doped 3C-SiC has not been explored. Consequently, the polytype stability during bulk growth of doped 3C-SiC is not known.
In this study we explore the growth of low and medium doped bulk-like 3C-SiC layers on off-oriented 6H-SiC substrates using a sublimation epitaxy technique. We compare SIMS, XRD and PL data obtained from 3C-SiC material grown using polycrystalline SiC sources prepared by CVD with a low (~1016cm-3) boron concentration and by PVT with a medium (~1018cm-3) nitrogen and boron concentrations. The effects of impurities on polytype stability and crystal quality of low and medium doped bulk-like 3C-SiC layers with thickness up to 0.5 mm are analysed. Moreover, the remaining challenges in growth of 3C-SiC for optoelectronic applications are discussed.
Hexagonal SiC is an excellent substrate for heteropeitaxial growth of 3C-SiC due to excellent compatibility in lattice constant and thermal expansion coefficient. However, the growth of 3C-SiC on such substrates is still being followed by a number of obstacles like polytype stabilization and high density of double positioning boundaries in the grown material. The polytype stability during epitaxial growth of doped 3C-SiC has not been explored. Consequently, the polytype stability during bulk growth of doped 3C-SiC is not known.
In this study we explore the growth of low and medium doped bulk-like 3C-SiC layers on off-oriented 6H-SiC substrates using a sublimation epitaxy technique. We compare SIMS, XRD and PL data obtained from 3C-SiC material grown using polycrystalline SiC sources prepared by CVD with a low (~1016cm-3) boron concentration and by PVT with a medium (~1018cm-3) nitrogen and boron concentrations. The effects of impurities on polytype stability and crystal quality of low and medium doped bulk-like 3C-SiC layers with thickness up to 0.5 mm are analysed. Moreover, the remaining challenges in growth of 3C-SiC for optoelectronic applications are discussed.
Original language | English |
---|---|
Publication date | 2013 |
Number of pages | 1 |
Publication status | Published - 2013 |
Event | E-MRS 2013 Spring Meeting - Strasbourg, France Duration: 27 May 2013 → 31 May 2013 http://www.emrs-strasbourg.com/index.php?option=com_content&task=view&id=569&Itemid=1583 |
Conference
Conference | E-MRS 2013 Spring Meeting |
---|---|
Country/Territory | France |
City | Strasbourg |
Period | 27/05/2013 → 31/05/2013 |
Internet address |