TY - JOUR
T1 - Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?
AU - Finnie, C.
AU - Andersen, C.H.
AU - Borch, J.
AU - Gjetting, S.
AU - Christensen, A.B.
AU - Boer, A.H. de
AU - Thordal-Christensen, H.
AU - Collinge, D.B.
PY - 2002
Y1 - 2002
N2 - 14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane H+-ATPase, creating a binding site for the phytotoxin fusicoccin. Barley 14-3-3 transcripts accumulate in the epidermis upon inoculation with the powdery mildew fungus. We have isolated a cDNA encoding a plasma membrane H+-ATPase (HvHA1), which is also induced by powdery mildew attack. The C-terminal domain of this H+-ATPase interacts with 14-3-3 proteins in the yeast two-hybrid system. Inoculation with the powdery mildew fungus, or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H+-ATPase. These effects are seen specifically in the inoculated epidermis and not in the whole leaf. We propose that 14-3-3 proteins are involved in an epidermis-specific response to the powdery mildew fungus, possibly via an activation of the plasma membrane H+-ATPase.
AB - 14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane H+-ATPase, creating a binding site for the phytotoxin fusicoccin. Barley 14-3-3 transcripts accumulate in the epidermis upon inoculation with the powdery mildew fungus. We have isolated a cDNA encoding a plasma membrane H+-ATPase (HvHA1), which is also induced by powdery mildew attack. The C-terminal domain of this H+-ATPase interacts with 14-3-3 proteins in the yeast two-hybrid system. Inoculation with the powdery mildew fungus, or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H+-ATPase. These effects are seen specifically in the inoculated epidermis and not in the whole leaf. We propose that 14-3-3 proteins are involved in an epidermis-specific response to the powdery mildew fungus, possibly via an activation of the plasma membrane H+-ATPase.
KW - 9-B risiko
U2 - 10.1023/A:1014938417267
DO - 10.1023/A:1014938417267
M3 - Journal article
SN - 0167-4412
VL - 49
SP - 137
EP - 147
JO - Plant Molecular Biology
JF - Plant Molecular Biology
IS - 2
ER -