DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review

  • Author: Gür, Fatih N.

    Technische Universität Dresden

  • Author: McPolin, Cillian P.T.

    King's College London

  • Author: Raza, Søren

    Optofluidics, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs. Lyngby, Denmark

  • Author: Mayer, Martin

    Technische Universität Dresden

  • Author: Roth, Diane J.

    King's College London

  • Author: Steiner, Anja Maria

    Technische Universität Dresden

  • Author: Löffler, Markus

    Technische Universität Dresden

  • Author: Fery, Andreas

    Technische Universität Dresden

  • Author: Brongersma, Mark L

    Stanford University

  • Author: Zayats, Anatoly V.

    King's College London

  • Author: König, Tobias A.F.

    Technische Universität Dresden

  • Author: Schmidt, Thorsten L.

    Technische Universität Dresden

View graph of relations

Plasmonic waveguides consisting of metal nanoparticle chains can localize and guide light well below the diffraction limit, but high propagation losses due to lithography-limited large interparticle spacing have impeded practical applications. Here, we demonstrate that DNA-origami-based self-assembly of monocrystalline gold nanoparticles allows the interparticle spacing to be decreased to ∼2 nm, thus reducing propagation losses to 0.8 dB per 50 nm at a deep subwavelength confinement of 62 nm (∼ /10). We characterize the individual waveguides with nanometer-scale resolution by electron energy-loss spectroscopy. Light propagation toward a fluorescent nanodiamond is directly visualized by cathodoluminescence imaging spectroscopy on a single-device level, thereby realizing nanoscale light manipulation and energy conversion. Simulations suggest that longitudinal plasmon modes arising from the narrow gaps are responsible for the efficient waveguiding. With this scalable DNA origami approach, micrometer-long propagation lengths could be achieved, enabling applications in information technology, sensing, and quantum optics.

Original languageEnglish
JournalNano letters
Volume18
Issue number11
Pages (from-to)7323-7329
ISSN1530-6984
DOIs
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Cathodoluminescence imaging spectroscopy, DNA nanotechnology, Electron energy loss spectroscopy, Fluorescent nanodiamonds, Nanoparticle chain waveguide, Plasmonics

ID: 161806994