DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond

Fatih N. Gür, Cillian P.T. McPolin, Søren Raza, Martin Mayer, Diane J. Roth, Anja Maria Steiner, Markus Löffler, Andreas Fery, Mark L. Brongersma, Anatoly V. Zayats, Tobias A.F. König*, Thorsten L. Schmidt

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    145 Downloads (Pure)


    Plasmonic waveguides consisting of metal nanoparticle chains can localize and guide light well below the diffraction limit, but high propagation losses due to lithography-limited large interparticle spacing have impeded practical applications. Here, we demonstrate that DNA-origami-based self-assembly of monocrystalline gold nanoparticles allows the interparticle spacing to be decreased to ∼2 nm, thus reducing propagation losses to 0.8 dB per 50 nm at a deep subwavelength confinement of 62 nm (∼ /10). We characterize the individual waveguides with nanometer-scale resolution by electron energy-loss spectroscopy. Light propagation toward a fluorescent nanodiamond is directly visualized by cathodoluminescence imaging spectroscopy on a single-device level, thereby realizing nanoscale light manipulation and energy conversion. Simulations suggest that longitudinal plasmon modes arising from the narrow gaps are responsible for the efficient waveguiding. With this scalable DNA origami approach, micrometer-long propagation lengths could be achieved, enabling applications in information technology, sensing, and quantum optics.

    Original languageEnglish
    JournalNano Letters
    Issue number11
    Pages (from-to)7323-7329
    Publication statusPublished - 2018


    • Cathodoluminescence imaging spectroscopy
    • DNA nanotechnology
    • Electron energy loss spectroscopy
    • Fluorescent nanodiamonds
    • Nanoparticle chain waveguide
    • Plasmonics


    Dive into the research topics of 'DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond'. Together they form a unique fingerprint.

    Cite this