Abstract
N-glycosylation is a common protein modification process, which affects a number of properties of proteins. Little is known about the distribution of N-glycosylation sequons, for example, the distance between glycosylated sites and their position in the protein primary sequence. Using a large set of experimentally confirmed eukaryotic N-glycoproteins we analyzed the relative position and distribution of sequons. N-Glycosylation probability was found to be lower in the termini of protein sequences compared to the mid region. N-glycosylated sequons were found much farther from C terminus compared to the N-terminus of the protein sequence and this effect was more pronounced for NXS sequons. The distribution of sequons, modeled based on balls-in-boxes classical occupancy, showed a near-maximum probability. Considerable proportion of sequons was found within a distance of ten amino acids, indicating that the steric hindrance was not a key factor in protein N-glycosylation. Interestingly, the distribution of all sequons present in N-glycoproteins showed a pattern very similar to that of glycosylated sequons. The results indicate that protein N-glycosylation chiefly follows a random design.
Original language | English |
---|---|
Journal | Computational Biology and Chemistry |
Volume | 35 |
Issue number | 2 |
Pages (from-to) | 57-61 |
ISSN | 1476-9271 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |
Keywords
- Distribution
- N-glycoprotein
- Probability
- Randomness
- Sequon