TY - JOUR
T1 - Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys
AU - Barlow, P.
AU - Leffers, Torben
PY - 1977
Y1 - 1977
N2 - Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of irradiation temperatures corresponding to the highest source densities is approximately 350°–500°C. The climb sources are not related to any pre-existing dislocations resolved in the microscope. The sources emit three types of loop: ‘rectangular’ loops with a100 Burgers vector and {100} habit plane, normal prismatic loops with Burgers vector a/2110, and Frank loops. There is no significant difference between the apparent activation energy for growth of the three types of loops.
The source points are suggested to be submicroscopic nickel precipitates-with reference to the existing evidence that, thermodynamically, there is not complete miscibility in the Cu-Ni system as implied by the published phase diagrams. It is furthermore suggested that these precipitates are platelets of Ni atoms on {100} planes, which would account for the formation of the rectangular loops. The binding energy between vacancies and Ni precipitates in Cu-10% Ni is estimated to be 0·3 eV.
AB - Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of irradiation temperatures corresponding to the highest source densities is approximately 350°–500°C. The climb sources are not related to any pre-existing dislocations resolved in the microscope. The sources emit three types of loop: ‘rectangular’ loops with a100 Burgers vector and {100} habit plane, normal prismatic loops with Burgers vector a/2110, and Frank loops. There is no significant difference between the apparent activation energy for growth of the three types of loops.
The source points are suggested to be submicroscopic nickel precipitates-with reference to the existing evidence that, thermodynamically, there is not complete miscibility in the Cu-Ni system as implied by the published phase diagrams. It is furthermore suggested that these precipitates are platelets of Ni atoms on {100} planes, which would account for the formation of the rectangular loops. The binding energy between vacancies and Ni precipitates in Cu-10% Ni is estimated to be 0·3 eV.
U2 - 10.1080/14786437708239740
DO - 10.1080/14786437708239740
M3 - Journal article
SN - 0031-8086
VL - 36
SP - 565
EP - 583
JO - Philosophical Magazine
JF - Philosophical Magazine
IS - 3
ER -