TY - JOUR
T1 - Discovery and Characterization of Cas9 Inhibitors Disseminated across Seven Bacterial Phyla
AU - Vazquez-Uribe, Ruben
AU - van der Helm, Eric
AU - Misiakou, Maria-Anna
AU - Lee, Sang-Woo
AU - Kol, Stefan
AU - Sommer, Morten Otto Alexander
PY - 2019
Y1 - 2019
N2 - CRISPR-Cas systems in bacteria and archaea provide immunity against bacteriophages and plasmids. To overcome CRISPR immunity, phages have acquired anti-CRISPR genes that reduce CRISPR-Cas activity. Using a synthetic genetic circuit, we developed a high-throughput approach to discover anti-CRISPR genes from metagenomic libraries based on their functional activity rather than sequence homology or genetic context. We identified 11 DNA fragments from soil, animal, and human metagenomes that circumvent Streptococcus pyogenes Cas9 activity in our selection strain. Further in vivo and in vitro characterization of a subset of these hits validated the activity of four anti-CRISPRs. Notably, homologs of some of these anti-CRISPRs were detected in seven different phyla, namely Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Spirochaetes, and Balneolaeota, and have high sequence identity suggesting recent horizontal gene transfer. Thus, anti-CRISPRs against type II-A CRISPR-Cas systems are widely distributed across bacterial phyla, suggesting a more complex ecological role than previously appreciated.
AB - CRISPR-Cas systems in bacteria and archaea provide immunity against bacteriophages and plasmids. To overcome CRISPR immunity, phages have acquired anti-CRISPR genes that reduce CRISPR-Cas activity. Using a synthetic genetic circuit, we developed a high-throughput approach to discover anti-CRISPR genes from metagenomic libraries based on their functional activity rather than sequence homology or genetic context. We identified 11 DNA fragments from soil, animal, and human metagenomes that circumvent Streptococcus pyogenes Cas9 activity in our selection strain. Further in vivo and in vitro characterization of a subset of these hits validated the activity of four anti-CRISPRs. Notably, homologs of some of these anti-CRISPRs were detected in seven different phyla, namely Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Spirochaetes, and Balneolaeota, and have high sequence identity suggesting recent horizontal gene transfer. Thus, anti-CRISPRs against type II-A CRISPR-Cas systems are widely distributed across bacterial phyla, suggesting a more complex ecological role than previously appreciated.
U2 - 10.1016/j.chom.2019.01.003
DO - 10.1016/j.chom.2019.01.003
M3 - Journal article
C2 - 30737174
SN - 1931-3128
VL - 25
SP - 233
EP - 241
JO - Cell Host & Microbe
JF - Cell Host & Microbe
IS - 2
ER -