TY - JOUR
T1 - Directionality of Plasmodesmata-Mediated Transport in Arabidopsis Leaves Supports Auxin Channeling
AU - Gao, Chen
AU - Liu, Xiangdong
AU - De Storme, Nico
AU - Jensen, Kaare Hartvig
AU - Xu, Qiyu
AU - Yang, Jintao
AU - Liu, Xiaohui
AU - Chen, Shaolin
AU - Martens, Helle Juel
AU - Schulz, Alexander
AU - Liesche, Johannes
PY - 2020
Y1 - 2020
N2 - The plant hormone auxin serves as central regulator of growth and development. Auxin transporters in the plasma membrane are assumed to define tissue-level patterns of auxin distribution [1, 2]. However, auxin is small enough to diffuse through the plasmodesmata that connect neighboring cells [3], presenting an alternative pathway, whose contribution to auxin transport remained largely unexplored [4]. Here, photoactivation microscopy [5, 6] was used to measure the capacity for small-molecule diffusion in the epidermis of Arabidopsis thaliana leaves. In the elongated epidermis cells covering the midrib and petiole, the plasmodesmata-mediated cell-wall permeability was found to be several times higher in the longitudinal than in the transverse direction. The physiological relevance of this asymmetry was tested through quantification of the shade-avoidance response, which depends on auxin transport from the leaf tip to the petiole in the abaxial side of the leaf [7], with the hypothesis that directionality of diffusion supplements transporter-mediated auxin movement [8]. Triggering the response by auxin application at the tip led to stronger leaf movement in wild-type plants than in gsl8 mutants [9], which lack the callose synthase necessary to establish directionality. The results match the predictions of a mathematical model of auxin transport based on the permeabilities measured in wild-type and mutant plants. It is concluded that plasmodesmata permeability can be selectively modulated within a plant cell and that the conferred directionality in diffusion can influence the tissue-specific distribution patterns of small molecules, like auxin.
AB - The plant hormone auxin serves as central regulator of growth and development. Auxin transporters in the plasma membrane are assumed to define tissue-level patterns of auxin distribution [1, 2]. However, auxin is small enough to diffuse through the plasmodesmata that connect neighboring cells [3], presenting an alternative pathway, whose contribution to auxin transport remained largely unexplored [4]. Here, photoactivation microscopy [5, 6] was used to measure the capacity for small-molecule diffusion in the epidermis of Arabidopsis thaliana leaves. In the elongated epidermis cells covering the midrib and petiole, the plasmodesmata-mediated cell-wall permeability was found to be several times higher in the longitudinal than in the transverse direction. The physiological relevance of this asymmetry was tested through quantification of the shade-avoidance response, which depends on auxin transport from the leaf tip to the petiole in the abaxial side of the leaf [7], with the hypothesis that directionality of diffusion supplements transporter-mediated auxin movement [8]. Triggering the response by auxin application at the tip led to stronger leaf movement in wild-type plants than in gsl8 mutants [9], which lack the callose synthase necessary to establish directionality. The results match the predictions of a mathematical model of auxin transport based on the permeabilities measured in wild-type and mutant plants. It is concluded that plasmodesmata permeability can be selectively modulated within a plant cell and that the conferred directionality in diffusion can influence the tissue-specific distribution patterns of small molecules, like auxin.
U2 - 10.1016/j.cub.2020.03.014
DO - 10.1016/j.cub.2020.03.014
M3 - Journal article
C2 - 32275878
SN - 0960-9822
VL - 30
SP - 1970
EP - 1977
JO - Current Biology
JF - Current Biology
IS - 10
ER -