Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound

Fredrik Gran, Jørgen Arendt Jensen

    Research output: Contribution to journalJournal articleResearchpeer-review

    540 Downloads (Pure)

    Abstract

    This paper investigates the possibility of flow estimation using spatio-temporal encoding of the transmissions in synthetic transmit aperture imaging (STA). The spatial encoding is based on a frequency division approach. In STA, a major disadvantage is that only a single transmitter (denoting single transducer element or a virtual source) is used in every transmission. The transmitted acoustic energy will be low compared to a conventional focused transmission in which a large part of the aperture is used. By using several transmitters simultaneously, the total transmitted energy can be increased. However, to focus the data properly, the signals originating from the different transmitters must be separated. To do so, the pass band of the transducer is divided into a number of subbands with disjoint spectral support. At every transmission, each transmitter is assigned one of the subbands. In receive, the signals are separated using a simple filtering operation. To attain high axial resolution, broadband spectra must be synthesized for each of the transmitters. By multiplexing the different waveforms on different transmitters over a number of transmissions, this can be accomplished. To further increase the transmitted energy, the waveforms are designed as linear frequency modulated signals. Therefore, the full excitation amplitude can be used during most of the transmission. The method has been evaluated for blood velocity estimation for several different velocities and incident angles. The program Field II was used. A 128-element transducer with a center frequency of 7 MHz was simulated. The 64 transmitting elements were used as the transmitting aperture and 128 elements were used as the receiving aperture. Four virtual sources were created in every transmission. By beamforming lines in the flow direction, directional data were extracted and correlated. Hereby, the velocity of the blood was estimated. The pulse repetition frequency was 16 kHz. Three different setups were investigated with flow angles of 45, 60, and 75 degrees with respect to the acoustic axis. Four different velocities were simulated for each angle at 0.10, 0.25, 0.50, and 1.00 m/s. The mean relative bias with respect to the peak flow for the three angles was less than 2%, 2%, and 4%, respectiv- ely.
    Original languageEnglish
    JournalI E E E Transactions on Ultrasonics, Ferroelectrics and Frequency Control
    Volume53
    Issue number7
    Pages (from-to)1289-1299
    ISSN0885-3010
    DOIs
    Publication statusPublished - 2006

    Bibliographical note

    Copyright: 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

    Keywords

    • medical ultrasound
    • Velocity estimation
    • spatial encoding

    Fingerprint

    Dive into the research topics of 'Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound'. Together they form a unique fingerprint.

    Cite this