Differential Geometry Applied to Rings and Möbius Nanostructures

Research output: Chapter in Book/Report/Conference proceedingBook chapterResearchpeer-review

Abstract

Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy changes due to curvature are most significant for the groundstate eventually leading to qualitative and quantitative changes in physical properties. In particular, the groundstate in-plane symmetry characteristics are broken by curvature effects, however, curvature contributions can be discarded at bending radii above 50 nm. In the second part of the chapter, a more complicated topological structure, the Möbius nanostructure, is analyzed and geometry effects for eigenstate properties are discussed including dependencies on the Möbius nanostructure width, length, thickness, and strain.
Original languageEnglish
Title of host publicationPhysics of Quantum Rings
EditorsVladimir M. Fomin
VolumePart III
PublisherSpringer
Publication date2014
Pages409-435
Chapter16
ISBN (Print)978-3-642-39196-5
ISBN (Electronic)978-3-642-39197-2
DOIs
Publication statusPublished - 2014
SeriesNanoScience and Technology
ISSN1434-4904

Cite this

Lassen, B., Willatzen, M., & Gravesen, J. (2014). Differential Geometry Applied to Rings and Möbius Nanostructures. In V. M. Fomin (Ed.), Physics of Quantum Rings (Vol. Part III, pp. 409-435). Springer. NanoScience and Technology https://doi.org/10.1007/978-3-642-39197-2_16