Abstract
Ceria is a promising material for cathodes in high-temperature CO2 electrolysis cells because ceria can become a mixed electronic and ionic conductor through doping, which enables a high surface area for electrocatalysis. Here, we systemically investigate the effect of strain to enhance the activity for electrocatalytic CO2RR on CeO2(111) using density functional theory corrected for on-site Coulomb interactions (DFT + U). We find that tensile strain decreases the oxygen vacancy formation energy due to a downshift of the Ce 4f orbital energy, in agreement with the larger size of the Ce3+ ion than the Ce4+ ion. The corresponding upshift in the Ce f-band center with compressive strain destabilizes the formation energy of the critical surface oxygen vacancies and reduces the energetic span of the reduction reaction, leading to a 4 orders of magnitude higher turnover frequency at 800 K for 4% compressive strain. These findings shed new light on possible pathways to enhance the catalytic activity for CO2RR on CeO2(111) and related catalytic systems by strain engineering.
Original language | English |
---|---|
Journal | Journal of Physical Chemistry C |
Volume | 125 |
Issue number | 26 |
Pages (from-to) | 14221-14227 |
Number of pages | 7 |
ISSN | 1932-7447 |
DOIs | |
Publication status | Published - 2021 |