TY - JOUR
T1 - Developmental effects of PFOS, PFOA and GenX in a 3D human induced pluripotent stem cell differentiation model
AU - Davidsen, Nichlas
AU - Rosenmai, Anna Kjerstine
AU - Lauschke, Karin
AU - Svingen, Terje
AU - Vinggaard, Anne Marie
PY - 2021
Y1 - 2021
N2 - Polyfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are persistent pollutants routinely found in human blood. PFASs have been associated with health issues such as decreased birth weight and impaired vaccination response in children. Substitutes to these PFASs, such as ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) have been introduced, although hazard information is limited. Human induced pluripotent stem cell (hiPSC) based models are valuable for studying these compounds, as they mimic human embryonic development. We used our recently developed PluriBeat assay to investigate PFOS, PFOA and GenX for effects on early embryonic development in vitro. In our assay hiPSCs go through the early stages of embryonic development in 3D cultures of embryoid bodies (EBs) that mimic the human blastocyst until they finally form beating cardiomyocytes. Both PFOS and PFOA had a strong effect on cardiomyocyte differentiation at non-cytotoxic concentrations, with PFOS being more potent than PFOA. Moreover, both compounds decreased EB size at the highest test concentrations. GenX induced a weak concentration-dependent effect on differentiation of one hiPSC line, but not of another. Transcriptional analysis of mRNA from the cardiomyocytes showed that PFOS increased expression of the early cardiac marker ISL1, whereas PFOA decreased expression of the cardiomyocyte marker MYH7. This suggest that PFOS and PFOA perturb cardiomyocyte differentiation by disrupting molecular pathways similar to those taking place in the developing embryo. Based on these findings, we conclude that our PluriBeat assay has the potential to become a valuable, sensitive model system for elucidating embryotoxic effects of PFASs in future.
AB - Polyfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are persistent pollutants routinely found in human blood. PFASs have been associated with health issues such as decreased birth weight and impaired vaccination response in children. Substitutes to these PFASs, such as ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) have been introduced, although hazard information is limited. Human induced pluripotent stem cell (hiPSC) based models are valuable for studying these compounds, as they mimic human embryonic development. We used our recently developed PluriBeat assay to investigate PFOS, PFOA and GenX for effects on early embryonic development in vitro. In our assay hiPSCs go through the early stages of embryonic development in 3D cultures of embryoid bodies (EBs) that mimic the human blastocyst until they finally form beating cardiomyocytes. Both PFOS and PFOA had a strong effect on cardiomyocyte differentiation at non-cytotoxic concentrations, with PFOS being more potent than PFOA. Moreover, both compounds decreased EB size at the highest test concentrations. GenX induced a weak concentration-dependent effect on differentiation of one hiPSC line, but not of another. Transcriptional analysis of mRNA from the cardiomyocytes showed that PFOS increased expression of the early cardiac marker ISL1, whereas PFOA decreased expression of the cardiomyocyte marker MYH7. This suggest that PFOS and PFOA perturb cardiomyocyte differentiation by disrupting molecular pathways similar to those taking place in the developing embryo. Based on these findings, we conclude that our PluriBeat assay has the potential to become a valuable, sensitive model system for elucidating embryotoxic effects of PFASs in future.
KW - hiPSC
KW - Cardiomyocytes
KW - Developmental toxicology
KW - PFOS
KW - PFOA
KW - GenX
U2 - 10.1016/j.chemosphere.2021.130624
DO - 10.1016/j.chemosphere.2021.130624
M3 - Journal article
C2 - 34134420
SN - 0045-6535
VL - 279
JO - Chemosphere
JF - Chemosphere
M1 - 130624
ER -