Abstract
An ongoing challenge for solid oxide electrolysis cells (SOECs) operated at high current densities, is the considerable long-term degradation of the most commonly used Ni/yttria-stabilized zirconia (YSZ) H2-electrode. In this work, we report a scalable route of infiltrating nano-sized electrocatalysts into the Ni/YSZ electrode of the cell after it has been reduced in a “one-atmosphere-reduction” process to address this challenge. The performance and durability of an infiltrated cell and a non-infiltrated sister-cell are evaluated. The infiltrated cell exhibits significantly enhanced long-term durability at high current densities, with cell voltage degradation rates of 0.028 V kh-1 (2.04 % kh-1) at −1.25 A cm-2 and 0.010 V kh-1 (0.78 % kh-1) at −1.00 A cm-2. These degradation rates are ∼14 times and ∼25 times less than those of the non-infiltrated cell, respectively.
Original language | English |
---|---|
Journal | ECS Transactions |
Volume | 91 |
Issue number | 1 |
Pages (from-to) | 2433-2442 |
Number of pages | 10 |
ISSN | 1938-5862 |
DOIs | |
Publication status | Published - 2019 |