Abstract
With increasing interest in biosustainable technologies, the need for converting available non-saccharide carbon sources most efficiently is emerging. Highly abundant crude glycerol, a major waste residue in biodiesel production, has attracted attention as a cheap carbon source for microbial fermentation processes. The most commonly known microbial cell factory, the yeast Saccharomyces cerevisiae, has been extensively applied for the production of a wide range of scientifically and industrially relevant products using saccharides (mainly glucose) as carbon source. However, it was shown that popular wild-type laboratory yeast strains, commonly applied in metabolic engineering studies, did not grow or grew very slowly in glycerol medium.In this work, an adaptive laboratory evolution approach to obtain S. cerevisiae strains with an improved ability to grow on glycerol was applied. A broad array of evolved strains, which exhibited a significant increase in the specific growth rate and a higher glycerol consumption rate, were isolated. The best performing strains were further analyzed by classical genetics and whole genome re-sequencing in order to understand the molecular basis of glycerol catabolism in yeast. The knowledge acquired in this study may be further applied for rational S. cerevisiae strain improvement for using glycerol as a carbon source in industrial biotechnology processes. This work is a part of the DeYeastLibrary consortium financed by ERA-IB DeYeastLibrary - Designer yeast strain library optimized for metabolic engineering applications http://www.era-ib.net/deyeast-library
Original language | English |
---|---|
Title of host publication | The Danish Microbiological Society Annual Congress 2015 : Programme & Abstracts |
Place of Publication | Copenhagen |
Publication date | 2015 |
Pages | 22-22 |
Publication status | Published - 2015 |
Event | The Danish Microbiological Society Annual Congress 2015 - Eigtved's Pakhus, Copenhagen, Denmark Duration: 9 Nov 2015 → 9 Nov 2015 |
Conference
Conference | The Danish Microbiological Society Annual Congress 2015 |
---|---|
Location | Eigtved's Pakhus |
Country/Territory | Denmark |
City | Copenhagen |
Period | 09/11/2015 → 09/11/2015 |