Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes

Soy proteins are prone to aggregate upon proteolysis, hindering their sustainable development in food processing. Here, a continuous work on the large insoluble peptide aggregates was carried out, aiming to develop a new type of soy peptide-based nanoparticle (SPN) for active cargo delivery. Sono-assembled SPN in spherical appearance and core-shell structure maintained by noncovalent interactions was successfully fabricated, exhibiting small particle size (103.95 nm) in a homogeneous distribution state (PDI = 0.18). Curcumin as a model cargo was efficiently encapsulated into SPN upon sonication, showing high water dispersity (129.6 mg/L, 104 higher than its water solubility) and storage stability. Additionally, the pepsin-resistant SPN contributed to the controlled release of curcumin at the intestinal phase and thus significantly improved the bioaccessibility. Encapsulated curcumin was effective in protecting glutamate-induced toxicity in PC12 cells, where the matrix SPN can simultaneously reduce lipid peroxidation and elevate antioxidant enzymes levels, innovatively demonstrating its bifunctionality during cellular delivery.

General information
Publication status: Published
Organisations: Department of Chemistry, South China University of Technology
Corresponding author: Zhou, F.
Contributors: Zhang, Y., Zhao, M., Ning, Z., Yu, S., Tang, N., Zhou, F.
Pages: 4208-4218
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Agricultural and Food Chemistry
Volume: 66
Issue number: 16
ISSN (Print): 0021-8561
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.8 SJR 1.111 SNIP 1.321
Web of Science (2018): Impact factor 3.571
Web of Science (2018): Indexed yes
Original language: English
Keywords: Bifunctionality, Cellular delivery, Curcumin, Gastric-intestinal release, Soy peptide nanoparticles
DOIs:
10.1021/acs.jafc.7b05889
Source: FindIt
Source ID: 2409500733
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review