Development, construction and analysis of the "Ørsted" fluxgate magnetometer

Otto V Nielsen, Jan Raagaard Petersen, Fritz Primdahl, Peter Brauer, Blanca Hernando, Agustin Fernandez, Jose Maria Garcia Merayo, Pavel Ripka

    Research output: Contribution to journalJournal articleResearchpeer-review


    The experiments and theoretical considerations leading to the construction of a high-performance three-axis fluxgate magnetometer are described. The magnetometer will be used (1996) in the Earth's field mapping satellite named "Ørsted". The fluxgate sensors are based on stress-annealed metallic glass ribbons as core materials. It is shown that very simple physical models can be used to explain the fluxgate mode of operation, thereby making it easy to calculate the overall sensor performance from first principles. Special attention is drawn to the core excitation current which is analysed on the basis of nonlinear electrical circuitry. It is furthermore shown that the ring-core demagnetizing field obeys a simple cosine law which permits the calculation of the sensor sensitivity with high accuracy. The sensitivity, that is the signal-to-noise ratio, is ultimately determined by the sensor noise which is about 15 pT RMS (0.06-10 Hz), corresponding to a noise power density (1/f noise) of 6.2 pT Hz-1/2 at 1 Hz. The actual magnetometer operating range and sensitivity is determined by the 1 bit resolution of the Earth's field represented by the output from the 18 bit AD converter used in the instrument (±65 536 nT with 0.5 nT resolution). The maximum attainablebandwidth is half the sensor excitation frequency (½ x 15 kHz) but the Ørsted magnetometer bandwidth is limited to 250 Hz. The thermal stability of the sensor has been measured to be better than 1 nT in the temperature range -20 to +60°C.
    Original languageEnglish
    JournalMeasurement Science and Technology
    Pages (from-to)1099-1115
    Publication statusPublished - 1995

    Cite this