Determining Biodegradation Kinetics of Hydrocarbons at Low Concentrations: Covering 5 and 9 Orders of Magnitude of Kow and Kaw - DTU Orbit (28/07/2019)

Determining Biodegradation Kinetics of Hydrocarbons at Low Concentrations: Covering 5 and 9 Orders of Magnitude of Kow and Kaw

A partitioning-based experimental platform was developed and applied to determine primary biodegradation kinetics of 53 hydrocarbons at ng/L to μg/L concentrations covering C8-C20, 11 structural classes, and several orders of magnitude in hydrophobicity and volatility: (1) Passive dosing from a loaded silicone donor was used to set the concentration of each hydrocarbon in mixture stock solutions; (2) these solutions were combined with environmental water samples in gastight auto sampler vials for 1-100 days incubation, and (3) automated solid phase microextraction (SPME) coupled to GC-MS was applied directly on these test systems for measuring primary biodegradation relative to abiotic controls. First order biodegradation kinetics were obtained for 40 hydrocarbons in activated sludge filtrate, 18 in seawater, and 21 in lake water. Water phase half-lives in seawater and lake water were poorly related to hydrophobicity and volatility but were, with a few exceptions, within a factor of 10 or shorter than BioHCwin predictions. The most persistent hydrocarbons, 1,1,4,4,6-pentamethyldecalin, perhydropyrene, 1,2,3,6,7,8-hexahydropyrene, and 2,2,4,4,6,8,8-heptamethylnonane, showed limited or inconsistent degradation in all three environmental media. This biodegradation approach can cover a large chemical space at low substrate concentrations, which makes it highly suited for optimizing predictive models for environmental biodegradation.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Fate & Effect of Chemicals
Corresponding author: Birch, H.
Contributors: Birch, H., Høst Hammershej, R., Mayer, P.
Pages: 2143-2151
Publication date: 20 Feb 2018
Peer-reviewed: Yes

Publication information
Journal: Environmental Science and Technology
Volume: 52
Issue number: 4
ISSN (Print): 0013-936X
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 7.38 SJR 2.514 SNIP 1.959
Web of Science (2018): Impact factor 7.149
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
acs.est.7b05624.pdf
DOIs:
10.1021/acs.est.7b05624
Source: Scopus
Source-ID: 85042301476
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review