Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review

Documents

DOI

View graph of relations

The passage of an electrical current through phosphoric acid doped polymer membranes involves parasitic migration of the acid, which imposes a critical issue for long-term operation of the high temperature polymer electrolyte membranes fuel cell (HT-PEMFC). To elucidate the phenomenon, a three-layered membrane is constructed with embedded micro reference electrodes to measure phosphoric acid redistribution in a polybenzimidazole based membrane. Under a constant load, a concentration gradient develops due to the acid migration, which drives the back diffusion of the acid and eventually reaches a steady state between migration and diffusion. The acid gradient is measured as a difference in local ohmic resistances of the anode- and cathode-layer membranes by electrochemical impedance spectroscopy. The phosphoric acid diffusion coefficient through the acid doped membrane is about 10(-11) m(2) s(-1), at least one order of magnitude lower than that of aqueous phosphoric acid solutions. The anion (H2PO4-) transference number is found to range up to 4% depending on current density, temperature and atmospheric humidity of the cell, implying that careful control of the operating parameters is needed in order to suppress the vehicular proton conduction as a degradation mitigation strategy. (C) The Author(s) 2018. Published by ECS.
Original languageEnglish
JournalJournal of the Electrochemical Society
Volume165
Issue number10
Pages (from-to)F863-F869
ISSN0013-4651
DOIs
Publication statusPublished - 2018

Bibliographical note

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.

CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 152499052