Detector design for active fault diagnosis in closed-loop systems

Fault diagnosis of closed-loop systems is extremely relevant for high-precision equipment and safety critical systems. Fault diagnosis is usually divided into 2 schemes: active and passive fault diagnosis. Recent studies have highlighted some advantages of active fault diagnosis based on dual Youla-Jabr-Bongiorno-Kucera parameters. In this paper, a method for closed-loop active fault diagnosis based on statistical detectors is given using dual Youla-Jabr-Bongiorno-Kucera parameters. The goal of this paper is 2-fold. First, the authors introduce a method for measuring a residual signal subject to white noise. Second, an optimal detector design is presented for single and multiple faults using the amplitude and phase shift of the residual signal to conduct diagnosis. Here, both the optimal case of a perfect model and the suboptimal case of a model with uncertainties are discussed. The method is successfully tested on a simulated system with parametric faults.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Automation and Control, Department of Applied Mathematics and Computer Science, Dynamical Systems
Contributors: Sekunda, A. K., Niemann, H. H., Poulsen, N. K.
Number of pages: 18
Publication date: 2018
Peer-reviewed: Yes

Publication information
ISSN (Print): 0890-6327
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 2.64 SJR 0.885 SNIP 0.96
Web of Science (2018): Impact factor 2.239
Web of Science (2018): Indexed yes
Original language: English
Keywords: Control and Systems Engineering, Signal Processing, Electrical and Electronic Engineering, Active fault diagnosis, Closed-loop systems, Statistical test, YJBK parameters, Closed loop systems, Failure analysis, Faulting, Safety engineering, Statistical tests, White noise, Multiple faults, Optimal detectors, Parametric fault, Residual signals, Safety critical systems, Simulated system, Fault detection
Electronic versions:
DOIs: 10.1002/acs.2858
Source: FindIt
Source-ID: 2396415595
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review