Design of an aeroelastically tailored 10 MW wind turbine rotor - DTU Orbit (22/08/2019)

This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP of 8.7%, without increasing blade mass and without significant increases in ultimate and fatigue loads on the hub and tower.

General information
Publication status: Published
Organisations: Department of Wind Energy, Aerodynamic design, Wind turbine loads & control
Contributors: Zahle, F., Tibaldi, C., Pavese, C., McWilliam, M., Blasques, J. P. A. A., Hansen, M. H.
Number of pages: 12
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series (Online)
Volume: 753
Article number: 062008
ISSN (Print): 1742-6596
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.45 SJR 0.24 SNIP 0.401
Web of Science (2016): Indexed yes
Original language: English
Keywords: Power and plant engineering (mechanical engineering), Optimisation, Design, Fluid mechanics and aerodynamics (mechanical engineering), Elasticity (mechanical engineering), Mechanical components, aerodynamics, blades, design engineering, elasticity, optimisation, rotors (mechanical), wind turbines, design, aeroelasticity, wind turbine rotors, optimization, aerodynamic shape, fatigue load, power 10 MW
Electronic versions:
JPCS_753_6_062008.pdf
DOIs:
10.1088/1742-6596/753/6/062008

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
Source: FindIt
Source-ID: 2346242156
Research output: Contribution to journal › Conference article – Annual report year: 2016 › Research › peer-review