Abstract
This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP of 8.7%, without increasing blade mass and without significant increases in ultimate and fatigue loads on the hub and tower.
Original language | English |
---|---|
Article number | 062008 |
Book series | Journal of Physics: Conference Series (Online) |
Volume | 753 |
Number of pages | 12 |
ISSN | 1742-6596 |
DOIs | |
Publication status | Published - 2016 |
Event | The Science of Making Torque from Wind 2016 - Technische Universität München (TUM), Munich, Germany Duration: 5 Oct 2016 → 7 Oct 2016 Conference number: 6 https://www.events.tum.de/?sub=29 |
Conference
Conference | The Science of Making Torque from Wind 2016 |
---|---|
Number | 6 |
Location | Technische Universität München (TUM) |
Country/Territory | Germany |
City | Munich |
Period | 05/10/2016 → 07/10/2016 |
Internet address |
Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Published under licence by IOP Publishing Ltd
Keywords
- Power and plant engineering (mechanical engineering)
- Optimisation
- Design
- Fluid mechanics and aerodynamics (mechanical engineering)
- Elasticity (mechanical engineering)
- Mechanical components
- aerodynamics
- blades
- design engineering
- elasticity
- optimisation
- rotors (mechanical)
- wind turbines
- design
- aeroelasticity
- wind turbine rotors
- optimization
- aerodynamic shape
- fatigue load
- power 10 MW