Design of a Multifunctional Interlayer for NASCION-Based Solid-State Li Metal Batteries

Shizhao Xiong, Yangyang Liu, Piotr Jankowski, Qiao Liu, Florian Nitze, Kai Xie, Jiangxuan Song, Aleksandar Matic*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

54 Downloads (Pure)

Abstract

NASCION‐type Li conductors have great potential to bring high capacity solid‐state batteries to realization, related to its properties such as high ionic conductivity, stability under ambient conditions, wide electrochemical stability window, and inexpensive production. However, their chemical and thermal instability toward metallic lithium (Li) has severely hindered attempts to utilize Li as anode material in NASCION‐based battery systems. In this work, it is shown how a tailored multifunctional interlayer between the solid electrolyte and Li anode can successfully address the interfacial issues. This interlayer is designed by creating a quasi‐solid‐state paste in which the functionalities of LAGP (Li1.5Al0.5Ge1.5(PO4)3) nanoparticles and an ionic liquid (IL) electrolyte are combined. In a solid‐sate cell, the LAGP‐IL interlayer separates the Li metal from bulk LAGP and creates a chemically stable interface with low resistance (≈5 Ω cm2) and efficiently prevents thermal runaway at elevated temperatures (300 °C). Solid‐state cells designed with the interlayer can be operated at high current densities, 1 mA cm−2, and enable high rate capability with high safety. Here developed strategy provides a generic path to design interlayers for solid‐state Li metal batteries.
Original languageEnglish
Article number2001444
JournalAdvanced Functional Materials
Volume30
Issue number22
Number of pages10
ISSN1616-301X
DOIs
Publication statusPublished - 2020

Cite this