Design, Characterization and Modelling of High Efficient Solar Powered Lighting Systems -
DTU Orbit (16/08/2019)

Design, Characterization and Modelling of High Efficient Solar Powered Lighting Systems
This paper discusses some of the major challenges in the development of L2L (Light-2-Light) products. It's the lack of
efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the
successful development of the products. We report the development of 2 Three-Port-Converters respectively for 1-10Wp
with a peak efficiency of 99.1% at 1.5 W output power at PV to
battery and almost similar characteristics for a 10-50 Wp. Furthermore, a modelling tool for L2L products has been
developed and a laboratory for feeding in component data not available in the datasheets to the model is described. A
living lab facility is realized to field test prototypes of L2L lighting products in their development state to validate the
modelling tool and tweak the parameters in the system for optimized performance the product. Finally, the model was
validated against a field test from the living lab over a four-day period with an offset of 5.3 %

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Diode Lasers and LED Systems, Department of Electrical
Engineering, Electronics, Technical University of Denmark, Out-sider A/S
Contributors: Nymann, P., Svane, F., Poulsen, P. B., Thorsteinsson, S., Lindén, J., Ploug, R. O., Mira Albert, M. D. C.,
Knott, A., Mogensen, I., Retoft, K.
Pages: 2827-31
Publication date: 2016

Host publication information
ISBN (Print): 3936338418
Keywords: Stand-alone PV Systems, High-Efficiency, Design, Modelling, Simulation
Electronic versions:
Source: PublicationPreSubmission
Source-ID: 124998435
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2016 ›
Research › peer-review