Dermal uptake of nicotine from air and clothing: Experimental verification

This study aims to elucidate in greater detail the dermal uptake of nicotine from air or from nicotine-exposed clothes, which was demonstrated recently in a preliminary study. Six non-smoking participants were exposed to gaseous nicotine (between 236 and 304 μg/m³) over 5 hours while breathing clean air through a hood. Four of the participants wore only shorts and 2 wore a set of clean clothes. One week later, 2 of the bare-skinned participants were again exposed in the chamber, but they showered immediately after exposure instead of the following morning. The 2 participants who wore clean clothes on week 1 were now exposed wearing a set of clothes that had been exposed to nicotine. All urine was collected for 84 hours after exposure and analyzed for nicotine and its metabolites, cotinine and 3OH-cotinine. All participants except those wearing fresh clothes excreted substantial amounts of biomarkers, comparable to levels expected from inhalation intake. Uptake for 1 participant wearing exposed clothes exceeded estimated intake via inhalation by >50%. Biomarker excretion continued during the entire urine collection period, indicating that nicotine accumulates in the skin and is released over several days. Absorbed nicotine was significantly lower after showering in 1 subject but not the other. Differences in the normalized uptakes and in the excretion patterns were observed among the participants. The observed cotinine half-lives suggest that non-smokers exposed to airborne nicotine may receive a substantial fraction through the dermal pathway. Washing skin and clothes exposed to nicotine may meaningfully decrease exposure.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Missouri University of Science and Technology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Fraunhofer Wilhelm-Klauditz-Institut (WKI)
Pages: 247-257
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Indoor Air
Volume: 28
Issue number: 2
ISSN (Print): 0905-6947
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 4.52
Web of Science (2018): Impact factor 4.71
Web of Science (2018): Indexed yes
Original language: English
Keywords: Biomonitoring, Exposure pathway, Indoor environment, Metabolism, Skin, Smoking
Electronic versions:
DOIs:
10.1111/ina.12437
Source: FindIt
Source ID: 2392735516
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review