Dermal uptake of nicotine from air and clothing: Experimental verification

Research output: Contribution to journalJournal article – Annual report year: 2017Researchpeer-review

Documents

DOI

View graph of relations

This study aims to elucidate in greater detail the dermal uptake of nicotine from air or from nicotine-exposed clothes, which was demonstrated recently in a preliminary study. Six non-smoking participants were exposed to gaseous nicotine (between 236 and 304 μg/m3 ) over 5 hours while breathing clean air through a hood. Four of the participants wore only shorts and 2 wore a set of clean clothes. One week later, 2 of the bare-skinned participants were again exposed in the chamber, but they showered immediately after exposure instead of the following morning. The 2 participants who wore clean clothes on week 1 were now exposed wearing a set of clothes that had been exposed to nicotine. All urine was collected for 84 hours after exposure and analyzed for nicotine and its metabolites, cotinine and 3OH-cotinine. All participants except those wearing fresh clothes excreted substantial amounts of biomarkers, comparable to levels expected from inhalation intake. Uptake for 1 participant wearing exposed clothes exceeded estimated intake via inhalation by >50%. Biomarker excretion continued during the entire urine collection period, indicating that nicotine accumulates in the skin and is released over several days. Absorbed nicotine was significantly lower after showering in 1 subject but not the other. Differences in the normalized uptakes and in the excretion patterns were observed among the participants. The observed cotinine half-lives suggest that non-smokers exposed to airborne nicotine may receive a substantial fraction through the dermal pathway. Washing skin and clothes exposed to nicotine may meaningfully decrease exposure.
Original languageEnglish
JournalIndoor Air
Volume28
Issue number2
Pages (from-to)247-257
ISSN0905-6947
DOIs
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Biomonitoring, Exposure pathway, Indoor environment, Metabolism, Skin, Smoking
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 140021096