Dermal transfer quantification of nanoparticles from nano-enabled surfaces

Engineered nanoparticles are used in various applications due to their unique properties, which have led to their widespread use in consumer products. Silver, titanium, and copper-based nanoparticles (NPs) are a few of the commonly used nanomaterials in surface coatings, mainly due to their biocidal, optical, or photocatalytical properties. The knowledge concerning potential dermal exposure to nanoparticles from nanoparticle-enabled surfaces is currently lacking, partly due to analytical challenges. The aim of this study is to perform dermal wiping tests on nano-enabled surfaces and characterize NP release from keyboard covers and freshly painted surfaces, in terms of mass and number concentration, as well as released particle size distribution through the use of spICP-MS. Three types of NPs were selected for method validation testing, Ag, TiO2, and CuO; and, the particle extraction from wipes was found to be efficient for Ag and CuO, but not for TiO2 particles. Thereafter, potential dermal transfer was tested by wipe sampling for two nanoAg-containing silicon keyboard covers, and wood painted with nanoCuO-containing paint. AgNP release was observed for one of the keyboard cover types, with around 5000 particles/cm² (corresponding to 0.002 ng/cm²) dislodged from the matrix after 3 wiping events. CuO NP release was 20,000 particles/cm² (0.885 ng/cm²) from the freshly painted surface, and magnitudes higher after the paint were subjected to wear, reaching 1.4 million particles/cm² (2.5 ng/cm²). The dermal transfer testing by wipe sampling and analytical approach used in this study demonstrates that wipe testing in combination with spICP-MS analysis can provide both qualitative data in terms of mass and number-based NP release, as well as particle characterization in terms of NP size distribution. Obtaining nano-specific release data can aid in providing a better understanding of dermal exposure to NPs from nano-enabled surfaces.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Fate & Effect of Chemicals, Department of Micro- and Nanotechnology, Surface Engineering
Corresponding author: Mackevica, A.
Contributors: Mackevica, A., Olsson, M. E., Mines, P. D., Heggelund, L. R., Foss Hansen, S.
Pages: 109-118
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: NanoImpact
Volume: 11
ISSN (Print): 2452-0748
Ratings:
Scopus rating (2018): CiteScore 5.52 SJR 1.322 SNIP 0.936
Original language: English
Keywords: Dermal exposure, Release, Nano-enabled surfaces, Consumer products, Wipe testing
DOIs:
10.1016/j.impact.2018.06.001
Source: FindIt
Source ID: 2435396600
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review