TY - JOUR
T1 - Derivation of Kokumi γ-Glutamyl Peptides and Volatile Aroma Compounds from Fermented Cereal Processing By-Products for Reducing Bitterness of Plant-Based Ingredients
AU - Rodríguez Valerón, Nabila
AU - Mak, Tiffany
AU - Jahn, Leonie J.
AU - Arboleya, Juan Carlos
AU - Sörensen, Pia M.
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023
Y1 - 2023
N2 - Current food production methods and consumption behaviours are unsustainable and contribute to environmental harm. One example is food waste—around 38% of food produced is wasted each year. Here, we show that two common food waste products, wheat bran and brewer’s spent grain, can successfully be upcycled via miso fermentation. During the fermentation process, kokumi γ-glutamyl peptides, known to increase mouthfulness, are produced; these include γ-ECG (oxidized), γ-EVG, γ-EV, γ-EE, γ-EF, and γ-EL. The profiles of kokumi peptides and volatile aroma compounds are correlated with koji substrate, pH, and enzymatic activity, offering straightforward parameters that can be manipulated to increase the abundance of kokumi peptides during the fermentation process. Correlation analysis demonstrates that some volatile aroma compounds, such as fatty acid ethyl esters, are correlated with kokumi peptide abundance and may be responsible for fatty, greasy, and buttery aromas. Consumer sensory analysis conveys that the bitter taste of vegetables, such as that in endives, can be dampened when miso extract containing kokumi peptides is added. This suggests that kokumi peptides, along with aroma volatile compounds, can enhance the overall flavour of plant-based products. This study opens new opportunities for cereal processing by-product upcycling via fermentation, ultimately having the potential to promote a plant-based diet.
AB - Current food production methods and consumption behaviours are unsustainable and contribute to environmental harm. One example is food waste—around 38% of food produced is wasted each year. Here, we show that two common food waste products, wheat bran and brewer’s spent grain, can successfully be upcycled via miso fermentation. During the fermentation process, kokumi γ-glutamyl peptides, known to increase mouthfulness, are produced; these include γ-ECG (oxidized), γ-EVG, γ-EV, γ-EE, γ-EF, and γ-EL. The profiles of kokumi peptides and volatile aroma compounds are correlated with koji substrate, pH, and enzymatic activity, offering straightforward parameters that can be manipulated to increase the abundance of kokumi peptides during the fermentation process. Correlation analysis demonstrates that some volatile aroma compounds, such as fatty acid ethyl esters, are correlated with kokumi peptide abundance and may be responsible for fatty, greasy, and buttery aromas. Consumer sensory analysis conveys that the bitter taste of vegetables, such as that in endives, can be dampened when miso extract containing kokumi peptides is added. This suggests that kokumi peptides, along with aroma volatile compounds, can enhance the overall flavour of plant-based products. This study opens new opportunities for cereal processing by-product upcycling via fermentation, ultimately having the potential to promote a plant-based diet.
KW - Aroma
KW - Bitterness
KW - Fermentation
KW - Kokumi
KW - Side stream utilisation
KW - Sustainability
KW - Upcycled miso
U2 - 10.3390/foods12234297
DO - 10.3390/foods12234297
M3 - Journal article
C2 - 38231764
AN - SCOPUS:85179300893
SN - 2304-8158
VL - 12
JO - Foods
JF - Foods
IS - 23
M1 - 4297
ER -